Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
China Tropical Medicine ; (12): 725-2023.
Article in Chinese | WPRIM | ID: wpr-979794

ABSTRACT

@#Abstract: Objective To understand the characteristics of mutations associated with resistance among 72 multidrug-resistant tuberculosis (MDR-TB) strains using whole genome sequencing (WGS) and to evaluate the performance of WGS for predicting MDR-TB drug resistance. Methods The clinical strains isolated from patients who visited the outpatient department of Tianjin Center for Tuberculosis Control from January to September in 2020 were collected. Identification tests using p-nitrobenzoic acid (PNB) medium were performed. Drug susceptibility tests (proportion method) on L-J medium were performed. After excluding duplicate strains, 72 MDR-TB strains were selected for WGS. Data were analyzed by using online databases and the phenotypic drug susceptibility test results were compared with resistance profiles predicted by WGS. Results All of 72 MDR-TB strains belonged to linage 2, and there was no significant difference in rate of pre-extensive drug-resistant tuberculosis (pre-XDR-TB) between modern type and ancestral type (χ2=0.287, P=0.592). A total of 81 mutation types were found from resistance-related genes for 12 anti-tuberculosis drugs, and the common mutation types in different drug-resistant strains were: streptomycin (SM): rpsL Lys43Arg; isoniazid (INH): katG Ser315Thr; rifampicin (RIF): rpoB Ser450Leu; ethambutol (EMB): embB Met306Val; ofloxacin (OFX), levofloxacin (LFX), moxifloxacin (MFX): gyrA Asp94Gly; kanamycin (KAM), capreomycin (CAP), amikacin (AMK): rrs 1401a>g; para-aminosalicylic acid (PAS): folC Ile43Thr. Nine mutation types were found in 9 prothionamide (PTO)-resistant strains, one type for each strain. The sensitivity and specificity of WGS for predicting resistance to different drugs were SM: 98.15% and 88.89%, INH: 90.28% and -, RIF: 98.62% and -, EMB: 79.49% and75.76%, OFX: 97.30% and 85.71%, KAM: 85.71% and 98.46%, PAS: 27.27% and 95.08%, PTO: 81.82% and 60.66%, CAP: 60.00% and 98.51%, LFX: 97.22% and 83.33%, MFX: 97.30% and 85.71%, AMK:100.00% and 100.00%, respectively. Conclusion WGS is a rapid and promising method which has high consistency with the phenotypic drug sensitivity test. Therefore, it has good application prospects in predicting drug resistance in MDR-TB.

2.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 404-408, 2020.
Article in Chinese | WPRIM | ID: wpr-821969

ABSTRACT

@#Guided bone regeneration (GBR) barrier membranes are of great significance for the reconstruction of the health and function of different periodontal tissues. Biocompatibility, spatial maintenance, closure, controllability and biological activation are the main criteria that should be met by these membranes. Artificial barrier membrane biomaterials can be divided into synthetic polymer materials, natural polymer materials and metals. According to their degradation characteristics, these membranes can be divided into two categories, absorbable and nonabsorbable membranes. GBR used for horizontal bone increments can be used to treat various types of bone defects, including the treatment of bone fenestration and bone cracking. The use of a non-absorbable e-PTFE membrane or absorbable collagen membrane can achieve the expected effect. However, for incremental or vertical bone growth at the alveolar crest, the use of this membrane is very challenging and requires good strength to maintain the osteogenic space. This space can be enhanced with e-PTFE or d-PTFE membranes with stable morphology, or absorbable membranes can be covered with titanium plates or meshes to achieve vertical bone increments. Currently, bioactive membranes, digital 3D-printed titanium membranes and piezoelectric active biological membranes are research hotspots. In future research, the biological activation of these membranes will be further improved, which will promote the development of artificial membranes in the next stage.

3.
Arch. endocrinol. metab. (Online) ; 62(6): 585-590, Dec. 2018. tab
Article in English | LILACS | ID: biblio-983810

ABSTRACT

ABSTRACT Objective: The aim was to characterize blood glucose fluctuations in patients with fulminant type 1 diabetes (FT1DM) at the stable stage using continuous blood glucose monitoring systems (CGMSs). Subjects and methods: Ten patients with FT1DM and 20 patients with classic type 1 diabetes mellitus (T1DM) (the control group) were monitored using CGMSs for 72 hours. Results: The CGMS data showed that the mean blood glucose (MBG), the standard deviation of the blood glucose (SDBG), the mean amplitude glycemic excursions (MAGE), the blood glucose areas and the percentages of blood glucose levels below 13.9 mmol/L were similar between the two groups. However, the percentage of blood glucose levels below 3.9 mmol/L was significantly higher in the FT1DM group compared to the T1DM group (p < 0.05). The minimum (Min) blood glucose level in the FT1DM group was significantly lower than that of the T1DM group (p < 0.05). Patients with FT1DM had severe dysfunction of the islet beta cells and alpha cells compared to patients with T1DM, as indicated by lower C-peptide values and higher glucagon/C-peptide values. Conclusion: In conclusion, patients with FT1DM at the stable stage were more prone to hypoglycemic episodes as recorded by CGMSs, and they had a greater association with severe dysfunction of both the beta and alpha islet cells compared to patients with T1DM.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Blood Glucose/analysis , Diabetes Mellitus, Type 1/blood , Reference Values , Blood Glucose/metabolism , C-Peptide/blood , Glucagon/blood , Blood Glucose Self-Monitoring/methods , Case-Control Studies , Retrospective Studies , Statistics, Nonparametric , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Insulin/blood
SELECTION OF CITATIONS
SEARCH DETAIL